lunes, 25 de marzo de 2013

ASTRONOMÍA GRIEGA

Los antiguos griegos hicieron importantes aportaciones a la astronomía. La Odisea de Homero se refiere a constelaciones como la Osa Mayor y Orión, y describe cómo las estrellas pueden servir de guía en la navegación. El poema Los trabajos y los días de Hesíodo informa al campesino sobre las constelaciones que salen antes del amanecer en diferentes épocas del año para indicar el momento adecuado para arar, sembrar y recolectar.

Las aportaciones científicas se asocian con los nombres de los filósofos griegos Tales de Mileto y Pitágoras, pero no se conserva ninguno de sus escritos. La leyenda de que Tales predijo un eclipse total de Sol el 28 de mayo de 585 a.C., parece ser apócrifa. Hacia el año 450 a.C., los griegos comenzaron un fructífero estudio de los movimientos planetarios. Filolao (siglo V a.C.), discípulo de Pitágoras, creía que la Tierra, el Sol, la Luna y los planetas giraban todos alrededor de un fuego central oculto por una ‘contratierra’ interpuesta. De acuerdo con su teoría, la revolución de la Tierra alrededor del fuego cada 24 horas explicaba los movimientos diarios del Sol y de las estrellas.

Hacia el 370 a.C., el astrónomo Eudoxo de Cnido explicaba los movimientos observados mediante la hipótesis de que una enorme esfera que transportaba las estrellas sobre su superficie interna se desplazaba alrededor de la Tierra, girando diariamente. Además, explicaba los movimientos solares, lunares y planetarios diciendo que dentro de la esfera de estrellas había otras muchas esferas transparentes interconectadas que giran de forma diferente.

El más original de los antiguos observadores de los cielos fue otro griego, Aristarco de Samos. Creía que los movimientos celestes se podían explicar mediante la hipótesis de que la Tierra gira sobre su eje una vez cada 24 horas y que junto con los demás planetas gira en torno al Sol. Esta explicación fue rechazada por la mayoría de los filósofos griegos que contemplaban a la Tierra como un globo inmóvil alrededor del cual giran los ligeros objetos celestes. Esta teoría, conocida como sistema geocéntrico, permaneció inalterada unos 2.000 años.
En el siglo II d.C. los griegos combinaban sus teorías celestes con observaciones trasladadas a planos. Los astrónomos Hiparco de Nicea y Tolomeo determinaron las posiciones de unas 1.000 estrellas brillantes y utilizaron este mapa estelar como base para medir los movimientos planetarios.

Al sustituir las esferas de Eudoxo por un sistema más flexible de círculos, plantearon una serie de círculos excéntricos, con la Tierra cerca de un centro común, para representar los movimientos generales hacia el Este alrededor del zodíaco a diferentes velocidades del Sol, la Luna y los planetas. Para explicar las variaciones periódicas en la velocidad del Sol y la Luna y los retrocesos de los planetas, decían que cada uno de estos cuerpos giraba uniformemente alrededor de un segundo círculo, llamado epiciclo, cuyo centro estaba situado en el primero. Mediante la elección adecuada de los diámetros y las velocidades de los dos movimientos circulares atribuidos a cada cuerpo se podía representar su movimiento observado.

En algunos casos se necesitaba un tercer cuerpo. Esta técnica fue descrita por Tolomeo en su gran obra, el Almagesto (véase Sistema de Tolomeo). Otra pensadora que, como Tolomeo, mantuvo viva la tradición de la astronomía griega en Alejandría en los primeros siglos de la era cristiana, fue Hipatia, discípula de Platón. Escribió comentarios sobre temas matemáticos y astronómicos y está considerada como la primera científica y filósofa de Occidente.

ASTRONOMÍA BABILÓNICA

Diversos pueblos antiguos como los egipcios, mayas y chinos desarrollaron interesantes mapas de las constelaciones y calendarios de gran utilidad (véase Astronomía maya). Los babilonios estudiaron los movimientos del Sol y de la Luna para perfeccionar su calendario.

 Solían designar como comienzo de cada mes el día siguiente a la luna nueva, cuando aparece el primer cuarto lunar después del ocaso. Al principio este día se determinaba mediante la observación, pero después los babilonios trataron de calcularlo anticipadamente. Hacia el 400 a.C. comprobaron que los movimientos aparentes del Sol y la Luna de Oeste a Este alrededor del zodíaco no tienen una velocidad constante. Parece que estos cuerpos se mueven con velocidad creciente durante la primera mitad de cada revolución hasta un máximo absoluto y entonces su velocidad disminuye hasta el mínimo originario.

Los babilonios intentaron representar este ciclo aritméticamente dando por ejemplo a la Luna una velocidad fija para su movimiento durante la mitad de su ciclo y una velocidad fija diferente para la otra mitad. Perfeccionaron además el método matemático representando la velocidad de la Luna como un factor que aumenta linealmente del mínimo al máximo durante la mitad de su revolución y entonces desciende al mínimo al final del ciclo. Con estos cálculos los astrónomos babilonios podían predecir la luna nueva y el día en que comenzaría el nuevo mes. Como consecuencia, conocían las posiciones de la Luna y del Sol todos los días del mes.
De forma parecida calculaban las posiciones planetarias, tanto en su movimiento hacia el Este como en su movimiento retrógrado. Los arqueólogos han desenterrado tablillas cuneiformes que muestran estos cálculos. Algunas de estas tablillas, que tienen su origen en las ciudades de Babilonia y Uruk, a las orillas del río Éufrates, llevan el nombre de Naburiannu (hacia 491 a.C.) o Kidinnu (hacia 379 a.C.), astrólogos que debieron ser los inventores de los sistemas de cálculo.

ASTRONOMÍA EN LA ANTIGÜEDAD



La curiosidad de los pueblos antiguos con respecto al día y la noche, al Sol, la Luna y las estrellas les llevó a la conclusión de que los cuerpos celestes parecen moverse de una forma regular, lo que resulta útil para definir el tiempo y orientarse. La astronomía solucionó los problemas que inquietaron a las primeras civilizaciones, es decir, la necesidad de establecer con precisión las épocas adecuadas para sembrar y recoger las cosechas y para las celebraciones, así como de orientarse en las largas travesías comerciales o en los viajes. Véase Arqueoastronomía.

Para los pueblos antiguos el cielo mostraba una conducta muy regular. El brillante Sol que separaba el día de la noche salía todas las mañanas desde una dirección, el Este, se movía uniformemente durante el día y se ponía en la dirección opuesta, el Oeste. Por la noche se podían ver miles de estrellas que seguían una trayectoria similar girando en agrupamientos permanentes llamados constelaciones.


En la zona templada del hemisferio norte comprobaron que el día y la noche no duraban lo mismo a lo largo del año. En los días largos, el Sol salía más al Norte y ascendía más alto en el cielo al mediodía; en los días con noches más largas el Sol salía más al Sur y no ascendía tanto. La observación de las estrellas que aparecen por el Oeste antes del ocaso o por el Este antes del amanecer mostraba que la posición relativa del Sol cambia de forma gradual.

Estudios posteriores pusieron de manifiesto que el Sol, la Luna y cinco planetas brillantes giran alrededor de la esfera de estrellas dentro de un estrecho cinturón llamado zodíaco. La Luna atraviesa el zodíaco con rapidez, adelantando al Sol una vez cada 29,5 días, periodo conocido como mes sinódico. Los que observaban las estrellas en la antigüedad intentaban fijar los días e incluso los meses y los años en un sistema de tiempo coherente, o calendario. Como ni un mes completo ni un año completo contienen exactamente un número entero de días, los creadores de calendarios asignaban a los sucesivos meses o años diferente número de días, que sacando una media, se aproximara al valor real. Así pues, el calendario moderno incluye 97 años bisiestos en cada periodo de 400 años, de modo que el número medio de días por año sea de 365,2425, muy próximo a 365,24220, el determinado astronómicamente.

El Sol y la Luna siempre atraviesan el zodíaco de Oeste a Este. No obstante, los cinco planetas brillantes: Mercurio, Marte, Venus, Júpiter y Saturno, que también se mueven hacia el Este sobre el fondo de las estrellas, tienen un movimiento hacia el Oeste, o retrógrado, de variada duración. Así pues, los planetas parecen seguir un recorrido hacia el Este de manera irregular, con curvas periódicas en sus trayectorias. Desde la antigüedad se ha pensado que los acontecimientos celestes, en especial los movimientos planetarios, tenían que ver con el destino de las personas. Esta creencia, llamada astrología, fomentó el desarrollo de esquemas matemáticos para predecir los movimientos planetarios y favoreció el progreso de la astronomía en el pasado.

Astronomía

Astronomía, ciencia que se ocupa de los cuerpos celestes del Universo, incluidos los planetas y sus satélites, los cometas y meteoroides, las estrellas y la materia interestelar, los sistemas de estrellas llamados galaxias y los cúmulos de galaxias. La astronomía moderna se divide en varias ramas: astrometría, el estudio mediante la observación de las posiciones y los movimientos de estos cuerpos; mecánica celeste, el estudio matemático de sus movimientos explicados por la teoría de la gravedad; astrofísica, el estudio de su composición química y su condición física mediante el análisis espectral y las leyes de la física, y cosmología, el estudio del Universo como un todo.

EL ESTUDIO DEL UNIVERSO

La cosmología busca la comprensión de la estructura del Universo. Las modernas concepciones cosmológicas se basan en el descubrimiento, hecho por el astrónomo estadounidense Edwin Hubble en 1929, de que todas las galaxias se alejan unas de otras a velocidades proporcionales a sus distancias. En 1922, el astrónomo ruso Alexandr Friedmann señaló que el Universo tiene, por término medio, la misma densidad de materia en todas partes.
 Utilizando la teoría de la relatividad general de Albert Einstein para calcular los efectos gravitacionales, mostró que un sistema de estas características tuvo que originarse en una singularidad de densidad ilimitada (el Big Bang o Gran Explosión) y que se expandió a partir de ese estado en la forma exacta en que después lo observó Hubble.

 Muchos astrónomos interpretan hoy sus datos desde el punto de vista del modelo del Big Bang, que a principios de la década de 1980 se perfeccionó aún más con la llamada teoría inflacionaria, intento de explicar las condiciones que llevaron al Big Bang. El descubrimiento en 1965 de la radiación de fondo de microondas, un débil resplandor de microondas, casi idénticas, en todas las direcciones, respondió a la predicción del modelo del Big Bang según la cual la radiación creada en el mismo Big Bang seguiría presente en el Universo.


Hasta ahora, los teóricos no han podido establecer si el Universo continuará su expansión indefinidamente. El problema se centra en la masa que pudiera existir en el Universo, dado que las estimaciones actuales no concuerdan con otras predicciones de la teoría del Big Bang. De acuerdo con estas estimaciones, la gravitación es insuficiente para detener la expansión.

Sin embargo, ciertos científicos apoyan el concepto de un universo oscilante, que requiere más masa que la que sostienen las estimaciones actuales. Éstos sugieren que la masa desaparecida está en los espacios intergalácticos o en los agujeros negros. Otra teoría sostiene que las partículas subatómicas llamadas neutrinos, presuntamente sin masa, sí tienen masa. El Universo está inundado de neutrinos, de forma que su masa total sumada podría bastar para mantener el proceso de expansión y contracción del Universo indefinidamente. Véase también Física.

EL ESTUDIO DE LAS GALAXIAS

Las galaxias son sistemas gigantes de estrellas que se encuentran a grandes distancias unos de otros. Las galaxias contienen, también, materia interestelar en forma de gas difuso y partículas de polvo atravesadas por débiles campos magnéticos en los que se encuentran atrapadas partículas energéticas electrizadas llamadas rayos cósmicos.


Las galaxias elípticas tienen forma esferoidal y muy poca materia interestelar; las galaxias espirales son discos giratorios muy achatados compuestos de materia interestelar, y contienen un gran número de estrellas masivas, así como de estrellas con menos masa también comunes a las galaxias elípticas. La materia del disco forma habitualmente dos brazos en espiral.


En el núcleo de algunas galaxias, fuentes de partículas rápidas (partículas cuyas velocidades se aproximan a las de la luz) emiten ondas de radio y rayos X, así como luz visible; por ello se las denomina galaxias activas. Este fenómeno se observa tanto en las galaxias elípticas como en las espirales; los objetos llamados quasares parece que también desarrollan esta actividad de manera extrema, con una luminosidad que llega a ser 100 veces la de todas las demás estrellas de la galaxia (véase Radioastronomía).


Los modelos teóricos de galaxias se basan en el intercambio de materia y energía entre estrellas y el material interestelar. Cuando se formaron, las galaxias constaban sólo de gas, y en una segunda fase las estrellas nacieron, y siguen naciendo, de este gas. Cuando se produce una supernova entre estas estrellas, se expulsa al espacio una materia rica en elementos pesados. De este modo, la materia interestelar se va enriqueciendo con elementos pesados, que después llegan a ser parte de nuevas generaciones de estrellas. En las galaxias elípticas el proceso se completa del todo, y queda muy poca materia interestelar. En las espirales, sin embargo, hay más materia interestelar; en estas galaxias el porcentaje de formación de estrellas es superior en los brazos de la espiral que en el núcleo. En apariencia, las ondas de densidad espiral comprimen la materia interestelar formando nubes oscuras que después se colapsan formando nuevas estrellas.

el estudio de las estrellas


Las estrellas están entre los objetos celestes mejor comprendidos. Como la luz de una estrella se dispersa en su espectro, las intensidades relativas a diferentes longitudes de onda aportan una información importante sobre el astro. La temperatura de la superficie se puede calcular con las leyes de la radiación térmica.

Si se conoce la distancia a una estrella se puede deducir su luminosidad sumando las intensidades observadas en todas las longitudes de onda. Su radio se obtiene, entonces, basándose en el hecho de que la luminosidad es el producto de la energía emitida por unidad de superficie (que depende de la temperatura de la superficie) y la superficie total.


Si el espectro de una estrella se estudia con métodos de alta resolución se pueden ver muchas líneas oscuras a determinadas longitudes de onda. Estas líneas se deben a la absorción de la luz de las capas más profundas por los átomos de las capas superiores, más frías. Los átomos presentes en la estrella se identifican comparando las líneas de absorción estelares con las producidas en el laboratorio por los gases conocidos; también se puede calcular la temperatura y la presión de la atmósfera, así como la abundancia relativa de elementos químicos. Véase Líneas de Fraunhofer.


La mayor parte de las estrellas se halla en una etapa de su vida conocida como la “secuencia principal”; en esta etapa, la luminosidad y la temperatura aumentan con la masa. Algunas estrellas son más brillantes y por tanto mayores que las de la secuencia principal de la misma temperatura: son las llamadas estrellas gigantes rojas. Muchas estrellas son más débiles y por tanto más pequeñas que las de la secuencia principal de la misma temperatura, como las enanas blancas (un 1% del diámetro del Sol) y las estrellas de neutrones (0,001% del diámetro del Sol).


Los modelos teóricos de los interiores estelares se han calculado basándose en la teoría del equilibrio existente entre la fuerza de gravedad, que contribuye al colapso de la estrella, y la presión de los gases recalentados que tienden a la expansión. Las altas temperaturas estelares también impulsan una corriente de calor desde el interior al exterior de la estrella. Para que la estrella esté en equilibrio, esta pérdida de calor tiene que compensarse con la energía que se libera en las reacciones nucleares internas. A medida que se acaban los diferentes combustibles nucleares, la estrella evoluciona lentamente, y el núcleo se contrae hasta densidades cada vez mayores.


En las estrellas de poca masa este proceso termina con la expulsión suave de las capas exteriores formando una nebulosa planetaria; el núcleo se enfría entonces hasta formar una enana blanca. Las estrellas de mayor masa se hacen inestables; a medida que evolucionan, este núcleo se colapsa repentinamente y forma una estrella de neutrones o un agujero negro, y la energía así liberada expulsa las capas exteriores a gran velocidad, en una espectacular explosión llamada supernova.